
Cornell University
Ithaca, NY 14853

00
Lfl

THE ISIS PROJECT: R&D Status and Technical Report

My 4, 193 - Aug 4, 195.

Keaeth P. Blra

DTIC
-ECTESEP 0 3 1985

8

This work was sponsored by the Defense Advanced Researd Projects Agency (DoD), ARPA
Order No. 5378, under contact MDA903-85-C-0124 issued by the Department of Army.

The viewvs, opinions, and findings contained in this report are those of the authors and should not
be construed as an official DoD position, policy, or decision.

Unclassified: Approved for unlimited distribution.

*85 8027 102

Academic Staff

K.P. Bfrmaon, Principal Investigtor

Students Supported During the Report Period

W. Diebric
A. Ml Abbadi

K. Herley
-f-s;ionForT. Joseph

~ ForT. Raeuchle
::Tl S .PA&I P. Stphen

I J;.:; ificzition

Distribuftion/

~ >illtyCodes
'Lll and~/or

Dist ISpocial

1. DescrIpton o Progrm

1.1. Overview

This report describes the acmplishments of the ISIS project during the six month period

February -August 1985. We assume that the reader is familiar with the goals and strategy of the

project, summarized in [1]. After a brief summary, we discuss areas where significant progress

has been made in greater detail.

As reported previously, we completed a prototype version of the ISIS system [2][M][4-he- -

first three months of the project. This software transforms fault-intolerant single-site program

specifications into fault-tolerant distributed implementation, and supervise execution of the

resulting code. During the second three-month period, several aspects of the system have been

enhanced: the interface between external programs and resilient objects, the language used to

specify resilient objects, and the command language used to control the system. We-have also

designed and begun construction of a performance monitoring tool and some application software.

Concurrency is the key to good performance in a distributed system: the less syndhronization

employed by a system, the less frequently it wil be experience delays while waiting for inter-site

message transmissions to complete. Recently, we achieved a basic insight into the nature of con-

currency in systems like ISI,' This has e to redesignthe ISIS communication primitives

[5], resulting in a communication subsystem that achieves very high levels of concurrency, but at

the same time makes it easier to design high-level software that is correct in the preseme of

failures. The development of these primitives will probably prove to be OW most important

achievement of the six-month report period. By achieving high levels of coi=rncy while simul-

taneously simplifying conrrent algorithms, thy represent a breakthrough in the methodology

for developing of large, fault-tolerant systems.

-3.

.

. . : *

1.2. ISIS System enhancemnt

The ISIS prototype is now largely complete. The system can be broadly split into several

major parts:

1. The interface presented to client software (normal C programs executing under UNIX).

Client programs treat resilient objects as the glue binding programs together into a distri-

buted, fault-tolerant application system.

2. The object specification language, for use when the predefined types are not suitable for

some application.

3. The runtime system, which provides primitives needed by resilient objects while they are

executing.

For each of the above areas, we summarize recent work and status.

The "dient-object" interface permits normal UNIX programs, written in C, to issue remote

procedure calls to ISIS resilient objects using a remote procedure.call interface. If desired, multi-

ple calls to ISIS can be bundled into a transaction terminating in a commit or abort (abort is the

default if a client fails or the site at which a client is running crashes). In the case of a commit,

changes made to data by the transaction become permanent; in the cae of an abort, changes are

discarded and no other transaction observes data in an intermediate state.

During the past 6 months, software to support the interface has been completed and

debugged. For example, assume that a banking program has been implemented as a front-ad

program that interacts with users, and employs a database object in which acounts and balances

wre maintained. Fig. 1. illustrates a fragment of code that the front end might use to contact the

database and update it, first insrting a new entry, and then initiating a "rebalandng" operation to

rebuild secondary indices for faster acss. The rebalancng is done myndeo 113 exam-

pie first cals the IIS name service to look up the database, called "dbase", and then invokes the

object twice. Note that the RKP syntax is a relatively Unsparent one, unlike some previous RPC

proposal for C. Obviously, the procedure is free to use any other C statements or coistructs that

.4.
:.....- . ., ... - . .. - - .. - ,.. .- .- :.. ,. - -.- .- -.-. -... .-.. .,.. . ,... . .-

11 -- 6 -7 -l - 1 7 ~

are needed. The example does not use the BEGINO and COMMITO routines, hence each call

executes as a separate transaction. We have built test objects of this sort, and typical calls require

about a tenth of a second to return a resut, a cost which is independent of the degree to which

data is replicated (of course, the update does not finish at remote sites for a longer period of

time, which does depend on the degree of replication). Such performance is more than adequate

for most applications.

Turning to the object specification language, a number of extensions have been made to the

object specification language, which is an extended version of C. These include a cobegin state-

ment for concurrency, a toplevel statement (as in MIT's ARGUS language), remote procedure

calls to other objects (induding asyndhronous ones), dynamic allocation and deallocation of resi-

lient records, and dynamically specified record sizes.

Debugging an ISIS object is done using a translator that converts specifications into conven-

tional C procedures that can be linked to calling programs and debugged using normal UNIX

Import namespace, dbase; /* Load interface definitions /
capabilty namespace NAMES; /0 Predefined capability on namespace "/
capsblity dbase DB; /" Capability on the dbase object I

struct dbentry dbregister(name, date, age, crediUim)
char *name, *date, age;
float creditlim;{

/1 Get capability on dbase object "
DB = NAMESSnmfind("dbase");
/" First register the new entry "
DBdbregsster(name, date, age, crediUim);
/0 Initiate asynchronous data structure rebalancig 01
ASYNC DB$dbJbalanceO;
/ Return the result to the caller /
return(db-ent);

Vlgurs 1: A C procedmre that blib up ad them cull a relent object

IJ

debugging facilities. This way, by the time an object is actually installed into iSis it will be rela-

tively bug-free.

Figure 2 illustrates the n-insert and nmJmd procedures in the name-space, which manages

a directory of symbolic names and capabilities to which they correspond (nmjnsert is invoked by

the system when a new instance of an object is created). The name space is represented as a list

" of records, which are scanned sequentially in a do-while loop. The basic rule is that there is only

one entry per name. A commit flag is used to indicate whether the entry is valid or invalid, and

an invalid entry will be re-used on a subsequent nmjinsert for the same name. Better concurrency

control is used in the actual namespace object, but in the interests of brevity we have simplified

the version given here. The basic strategy is to lock each record before accessing it, using promot.

able read locks that are converted to write-locks if the entry is actually written. If the transaction

calling the nimjinsert commits, the entry it has written becomes visible to other callers; if it aborts,

other transactions are permitted to read the entry, but detect that its commit flag is dear and

hence that it is invalid.

Most C programmers should be able to write object specifications of this sort - the I/O

statement, locking, and the declaration rules are the only things that distinguish this code from a

normal C program. A more experienced user is, of course, able to build an object that would give

better or more concurrent performance. In contrast, only a few experts can write distributed

fault-tolerant programs of the sort that this object "compiles" into, and even fewer could hand-

code a really sophisticated namespace with any chance of obtaining a correct result.

Although we have been working actively within the system, most of this effort is relatively

techical and hence we defer a detailed discussion to a planned paper on the ISIS implementation.

One of the more visible appears of progress, however, involves a new command language that

greatly increases our control over the ISIS system while it is runmnig. Commands anow the user

to dynamically add and delete sites, "load" and "unload" types as they are needed, create and

delete objects, list the resilient objects known at a site, etc. Figure 3 illustrates the startup le

/0 The name-space is a list of na..entry Strnxes
typedef struct inmentry nmzentry;
struct inu..entry

int mlg
cdam nm ne32];
cap-t n=-Cap;

#define NNL VAID Oxon ~ /0 Entry in use 0/
#define NNLCON*Alrr 0x000 (Has been committed 01

10 Definition of the namespace object1
resilient namespace

created rnakeone; /0 Initializes during create/
entry nmjink, nm-ulink, ninjlnd; 1Naniespace routines 'I

resilient inn..entry namesf; 10 The name-space itself 0/

proc int
nmjink(name, cap)
char 'namne;
capability cap;

register i, n;
nm-antry ent;

/0 Look for emsting entry for thisnms
n - 0;
do

/0 Ths 110 statement locks and then rem&h the n'th namespace record O
eat<.p namcsfn++];

P* A match? 01
if(strenp(ent-nm..name. name) -)

if((ent-Mnjlag&NM..COMMrr) -- 0)
break;

else
I* Name conflicts with a previous entry 0/
abort retrn(.1);

whfle(enLnm-JIag&NY..VAIlD);

/e Found entry to usef*
em.namflag - NNL.VAIDh

/0 Copy name and capability information into a=or 0/
strcpy(enm.narne, name);
ent.nm...cap = cap;

(0 Now write it pVrovisionafly" with the cmmt bit a9I
ent-nzulag I- N7XLOOM!~OT

nFM~jnj<.w .7-

return(O);

/I Read-only procedure to look up a name and return a capability '
read-only proc capability

inidname)
string name;{ .

register n;
nZE~entry ent;

/" Search loop, as above, getting read-lock before each /0 "/.
n -0;
do

ent <. names[n++];
if(st,(ent.m_.name, name) -= 0)

if(ent.nm_flag&NMCOMMrT)
/0 Return the capability on a match with a valid entry /
return(ent.nmcap);

else
break;

} ,'

while(ent.nmflag&NM.ALID);

is Not found or entry was invalid.- return error indication Of
abort return(NULLCAP);

Figure 2: Fragnient of the ISIS nannpace object

used to configure ISIS at site "anubis"; commands like these can also be issued interactively while

ISIS is running. The configuration file defines three ISIS site by giving the machine names and

ARPANEr port addresses at which they can be contacted (as offsets from a base-port number),

then defines 5 types and loads one of them. A file for restart information is then defined, and if

the system is coldstarting, the namespace object is instantiated. Otherwise, the system is told to

restart from the restart file written prior to the crash.

The overall robustness of ISIS is steadily increasing in respome to a continuing program of

testing and development. Performance is good when no failures occur, particularly because of

coneurrent update techniques which we describe below. Recovery from prta faures, in which

some sites remain operational ha been implemented, and also gives good performn. Sl lO

needed is code to hande recovery from totl faiw e: (all sites fafl at once), and pwrtiuio (sites

* 8. "

MSi configuration file for site anubis

1* Site numbering and rmaldie names1
mysite 1 anubis
site 2 Osiris
site 3 amun

/0 DE base port
-aq 1200

/* Type definitions and corresponding executable files/
typedef 0 names-.t ruis/binmespc
typedef 1 btreet fnia/bibteeobj
typedef 2 flle..t rnis/binffileobj
typedef 3 queue-t fiibinqueueobj
typedef 4 stack..t Aisbinstackobj

1* Load the namespace. Other types loaded as needed1
load names-t

P Tell MSIS what restart file to use/
restartfile=/anubis/restarti..le

if coldstart
/0 Coldstart: create namespacr object '

create "names": type=names.t, sites={anubis, Osiris amun}
else

/* Otherwise, initiate restart sequence
restart

endif

FIgure 3: Fragment of I SIS command Meb

lose the ability to communicate with one another but do not fail). Although both of these are

relatively rare events in most networks, we intend to addrs them eventually.

1.3. Performance umonitor

P. Stephenson has designed and is now implementing a distributed performance monitoring

program. Tis tool could be used in any distributed system, but is particularly well suited to

obtaining performance information from the IMI system while it runs. The program is table

.

driven, and employs a graphics interface to the SUN window system for output. It is possible to

change the parts of the system being monitored, replay activity during a selected period of time,

focus on the detailed behavior of the system while some event is owcurring, plot system load and

performance, and so forth. Our intention is to use the tool for overall tuning and debugging, par-

ticularly as we begin developing data migration algorithms for ISIS.

1.4. Appfcathm uoftware devdopmnt

With the completion of the ISIS system, we are now beginning to focus on applications.

There will be more to report in this area in the near future. At the moment, only some test

software and a distributed game program are operational. One of our long term ideas is to port a

medical database system, MDB-1, onto ISIS. This database system is available to us because of a

collaboration with medical researchers at Columbia University, and is of particular interest because

its modular structure is tailored to a resilient object environment.

1.5. Communlcation primitive.

K. Birman and T. Joseph have recently completed a thorough re-zamination of the com-

munication problem in ISIS, focusing on the communication layer of the system and the ordering

relationships between communication events. The solution, described in [5] is remarkable in

several respects. First, it preserves a very high level of concurrency, which in a distributed system

is the key to obtaining good performance. Most other work on communication primitives has not

focused on this issue. Second, the ordering of events seen by users of the primitives is the same

at all sites (although not "simultaneous" in the sense of a global dock). This results in simplified

high-level algorithms, increasing the level of confidence that can be placed in their correctnes. In

effect, we have designed a set of communication primitives that eliminates the need for most syn-

chronization by enabling a process to assume that other processes will experience the same

sequence of events as it does, unless they fail first.

-10 -

An example will illustrate the class of problems that arise here. Consider a process p that is

updating a replicated data item maintained by a set of data managers. Assume that this update is

performed using a reliable broadcast: if any data manager receives the broadcast and remains

operational, all data managers will receive it. If p fails, a data manager could observe any of

several outcomes:

1. The update is received prior to detection of the failure.

2. The failure is detected prior to reception of the update.
3. The failure is detected and the update is not delivered (anywhere).

It may be difficult for a data manager to distinguish cases 2 and 3. Moreover, if some

managers experience the first outcome and others the second one, the overall system must still be

correct. There are several ways that these problems might be addressed. By performing updates

using a two-phase commit, agreement can be reached on the action to take after a failure is

detected (Skeen-a]. This approach could be slow because it is synchronous. Another possibility is

to discard messages arriving from a process that has failed. However, inconsistencies may arise if

messages are discarded by one process but retained by another. A third alternative, representative

of +he general approach of our work, is to construct a broadcast protocol in which the second out.

come never occurs. Using the ISIS communication primitives, a data manager can perform an

update immediately upon receiving the corresponding message, and can take a recovery action

immediately after detecting a failure; moreover, every data manager experiences the same

sequence of events, or fails first.

What types of events are we including? We have distinguished three kinds "broadcasts"

which are issued by one process to a set of destination processes, all having the property that they

are delivered to every operational destination or none, regardless of failures1. The three types are:

'Although the broadcasts are process-to-process, processes can reside oan differem sites. These are thus mre
powerful than site-c>site broadcasts. Note that the term "broadcast" is used here to mewn a software message-
transmission protocol, rt an ethernet broadcast (although sud a hardware feature might be useful when implementing
som of our protocols).

-

1. Independently issued broadcasts that should be delivered in a consistent order to any over- p

lapping destinations.

2. Related broadcasts which must be performed in the order they were issued.

3. Broadcasts used to notify processes of failures and recoveries of other processes in their

process group".

Our protocols enable processes to employ consistent strategies when processing messages and

reacting to failure or recoveries, without using any special protocols to decide what to do. More-

over, "race conditions" and other anomalies causes by unpredictable message orderings are are

ruled out. A more thorough discussion, together with examples illustrating the extent to which
I

the approach simplifies high-level algorithms appears in [51, which is being sent und separate

cover.

T. Joseph has developed a model within which this problem can be studied formally [6]. Ee

has found that the technique (and hence our primitives) would be useful in almost any correct

message-based system. In future operating systems, we believe that communication primitives

such as these will be critical to good performance, and the key to the development of correct,

fault-tolerant distributed software.

2. Summary of trip and vhta'

K. Birman visited the University of Texas at Austin and the NASA Johnson Space Center,

where he gave seminars titled "An Overview of the ISIS Project". He was accompanied by T.

Joseph, who will remain with the project as a Research Associate in the fall, and who spoke about
S

his work on concurrency in message-based systems. Birman also visited with Bill Joy at SUN

Microsystems in California regarding a paper on ISIS [4] and visited the systems research center at

IBM in Palo Alto (only minor local expenses were charged to the grant for this trip). Birman and

several students also attended the ACM PODC conference at the end of this reporting period.

-12-

3. Statu relative to plnned effort.

Research is underway in all major areas of the project.

4. Fiscal status.

A summary of expenditures is attached.

5. References

1. An overview of the ISIS project. TEEE Distributed Processing Tedhnical Committee
Newsletter, June 1985.

2. K.P. Birman, T. Joseph, T. Raecdle, A. El Abaddi. Implementing Fault-Tolerant Distributed
Objects. IEEE Trans. on Software Engineering, TSE-11, No. 4, June 1985.

* 3. T. Joseph., K. Birman Low cost management of replicated data in distributed computing Sys-
term. To appear: ACM TOCS.

4. K.P. Birman. Replication and availability in ISIS. To be presented: ACM Symp. on Operating
Systems Principles (SOSP), Orcas Island, Dec. 19g5.

5. K.P. Birman, T. Joseph. Reliable --- unication in an unreliable environmt. Cornell Univ.
Dept. of Computer Science Tedh. Report TR-85-692, Aug. 1985.

* 6. T. Joseph. Ph.D. dissertation. In preparation.

V

-13-

FISCAL SUMMARY

Expenditures thruigh &A11995
Summer Salaries (Birinan & Nicolau) 18,526
GRA AY sal 11,731
GRA Summer sal 18,050
Applicable employee benfits, 1,853
Travel 2,905
Supplies 2,099
Equipment 67,993
Applicable indirect cost 31,653

Anticipated toug 10/4/1985
Secretarial support
Applicable employee benefits 855
Academic year GRA 24,450
comp.mmin 7,20
Publications 1,095
Supplies 301
Comp-supplies 1,333
Applicable indirect cost 7,985

Total to 10/4/95 200,254

.14.
.~~~ .. .-

